Flexible Process Graph: A Prologue

Artem Polyvyanyy and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam
D-14482 Potsdam, Germany
{Artem.Polyvyanyy,Mathias. Weske } @hpi.uni-potsdam.de

Abstract. Businesses document their operational processes as process
models. The common practice is to represent process models as directed
graphs. The nodes of a process graph represent activities and directed
edges constitute activity ordering constraints. A flexible process graph
modeling approach proposes to generalize process graph structure to a
hypergraph. Obtained process structure aims at formalization of ad-hoc
process control flow. In this paper we discuss aspects relevant to concur-
rent execution of process activities in a collaborative manner organized as
a flexible process graph. We provide a real world flexible process scenario
to illustrate the approach.

Key words: business process modeling, hypergraph-structured process,
ad-hoc process, flexible process

1 Introduction

In the dynamic and competitive business environment of nowadays it is essential
for companies to introduce technologies that allow competitive market advan-
tage. Products and services need to be served reliably, fast, at the best price and
quality. Companies use process modeling techniques to document, study, and
improve their operational procedures. A business process model consists of a set
of activity models and execution constraints between them. A business process
instance represents a concrete case in the operational business of a company,
consisting of activity instances [I]. Each business process model restricts a col-
lection of process instances that cover particular business task handling. Every
business task can be managed differently under special conditions, thus resulting
in different process instances [2/3].

In many cases, an essential part of overall company success relies on running
processes that assume ad-hoc nature. Such scenarios can not be solely described
by the best-practice experience, but rely on process participants’ creativity (pro-
cess participants’ flexible behavior). Alternatively, process flexibility can be ex-
plained by a dynamic process environment that influences process decisions and
thus control flow routing. Process flexibility is also important in a highly col-
laborative environment where process participants collectively contribute to the
achievement of a process goal. Such processes are characterized by numerous

mailto:Artem.Polyvyanyy@hpi.uni-potsdam.de, Mathias.Weske@hpi.uni-potsdam.de

synchronization points and work handovers which might result in long process
delays. Much research effort is invested in the study of the proposed scenarios.
We concentrate on issues relevant to the task of process modeling and aim at
full control over the execution of ad-hoc processes.

In [4] we introduced flexible process graph (FPG) as a formal approach for
definition of ad-hoc process control flow. In this paper we discuss how the FPG
formalism can be used to represent concurrent ad-hoc processes executed by
different process participants.

The rest of the paper is organized as follows. In the next section we briefly
sketch the FPG formalism. Afterwards, in section [3] we discuss issues relevant
to the concurrent FPG activity execution by different process participants. Sub-
sequently, section [4] illustrates presented concepts with a real world scenario of
an ad-hoc business process and shows how FPG can be used to formalize it.
Concluding remarks complete this paper.

2 Flexible Process Graph Foundations

In this section we briefly present the main concepts of FPG. FPG was first intro-
duced in [] and is a formal way for representing ad-hoc process control flow. In
the core of FPG lies generalization of a directed process graph edge which defines
a sequential execution of adjacent activities. In mathematics, generalization of
a graph is a hypergraph [5lJ6]. Hypergraph edges (hyperedges) are arbitrary sets
of nodes. Thus, a hyperedge is an edge that can connect multiple activities. As
opposite to a graph-based sequence control flow pattern, it is allowed that within
a hyperedge a process participant can choose which activity to execute next. A
process model becomes hypergraph-, rather than graph-structured:

Definition 1. A flexible process graph (FPG) is a triple (A, E,T) where:

o A is a finite set of activity nodes

o F is a finite set of edges e = (I(e),0(e)) € E, ANE =1
— I:E — P(A) is a function defining edge input activities
— O: FE = P(A\D is a function defining edge output activities
—VYee E:I(e)NO(e) =0

o T is an edge type function, T : E — {and, zor,or}.

Each edge e € F in FPG is split into two subsets of input I(e) and output
O(e) activities to obtain a directed hypergraph. Unlike regular graph-structured
process models that contain special routing nodes—gateways, FPG introduces
edge types that implement routing decisions. The structure of FPG is fixed and
does not change during execution of a process instance. Dynamics of a process
represented as FPG is specified by process state transitions:

Definition 2. A state of a flexible process graph (A, E,T) is defined by a state
function S : A — Ng x Ny mapping a set of activity nodes onto the pairs of
natural numbers including zero (Ng = NU {0}).

When in a certain state, each activity node a € A of FPG is assigned two
numbers S(a) = (w, 8) € NgxNy. S, (a) = w (white tokens) specifies the number
of instances of activity a that need to be accomplished from now on in the process
instance. Respectively, Sg(a) = 5 (black tokens) specifies the number of activity
instances so far accomplished in the process instance.

Process Instantiation FPG process initialization is performed in two steps:
1. S(a) is set to (0,0) for all a € A, 2. For each activity a € A the initial enabling
is performed. An activity a is enabled at process start if €*(a) holds:

€(a)=3Fee€ E:aecO(e) N(e) =0 A cond(e,a)

The cond predicate implements edge type ¢t € T routing decisions (e.g., Va €
O(e) : cond(e,a) = true, if T(e) = and). If €*(a) holds, the process state S is
modified to give S’, such that S'(a) = S(a) + (1,0).

Activity Firing An activity a € A can fire in an FPG process instance if it
is enabled (S, (a) > 0). Activity firing results in the process state S change to
S’, such that S’(a) = S(a) + (—1,1), i.e., one white token gets painted black.
Activity firing is instantaneous, consumes no time, and indicates a completion
of the corresponding activity. After activity a has fired, the activity enabling has
to be performed on a set composed of output activities of a: U.e pjacre)y Of€)-

Activity Enabling An activity a € A can be enabled after execution of an
activity ag if €(ag, a) holds:

€(ag,a) =3e € EVa; € I(e) : ag € I(e) Aa € O(e) ANSp(a;) > Sa(ag) Acond(e, a)

An activity a enabling depends on execution of the preceding activity, e.g.,
ag. An activity a can be enabled if there exists an edge e € E, such that a is
the output activity of e and ag is the input activity of e. Further, for each input
activity a; of the edge e it holds that the number of accomplished instances of
a; is at least the number of accomplished instances of ag. Also, the edge e type
t € T condition must hold. If e(ag,a) holds, the process state S is modified to
result in state S’, such that S’(a) = S(a) + (1,0).

Process Termination A process instance terminates when there is no activity
to execute, i.e., no activity is enabled (Va € A : S, (a) = 0).

3 From Formalism to Real World Business Processes

In this section we formally define the mechanism of activity assignment to differ-
ent process participants and address the FPG activity concept as a time lasting
phenomenon.

3.1 Process Roles

Activities in business processes are either automated by software systems or
executed manually by people. Following, we discuss aspects concerning the as-
signment of process activities to agents that actually execute them. For the sake
of simplicity we abstract from differentiating human and software agents and
refer to them as roles. Each role is a sequential system, i.e., can be in the process
of execution of only one activity at each moment in time. Therefore, concur-
rent activity execution can only be achieved by several roles executing different
activities. Following, we formally define process role assignment:

Definition 3. A flexible process graph FPG = (A, E,T) role assignment is a
pair (R, W) where:

o R is a finite set of roles
o W:A— P(R)\D is a roles assignment function.

Each activity in FPG must have at least one role assigned. Each activity in
FPG can be associated with several roles. Once enabled, an FPG activity a € A
can only be executed by a role r € W(a).

During FPG process instance execution, each participating role can observe a
subset of activities currently available for execution by the role—a role task list.
By selecting and executing an activity from the proposed list the role contributes
to the achievement of a process goal. The assignment of roles to FPG activities
allows us to formally define a concept of a role task list.

Definition 4. A role task list for the role r € R from the role assignment (R, W)
for the flexible process graph FPG = (A, E,T) is a function L, where:

o L:R — P(A) is defined on a subset of FPG activities
o L(r) ={a € Alr € W(a) A S,(a) > 0}, where r € R.

Thus, a role task list is a subset of enabled activities of the FPG that are
assigned to a certain role. Note, that a process participating role can consult on
the number of enabled activity instances pending for execution by referring to
the FPG state function S (cf. Definition [2)).

3.2 Modeling Parallelism

So far we have presented FPG as the mechanism to define flexible activity en-
abling scenarios. Similar to Petri net [7] transitions, activity firing in FPG con-
sumes no time. However, in real world scenarios instantiated business processes
consist of activity instances that actually take time. Each activity instance is
represented by its state transition system. Following, we discuss issues relevant
to the interpretation of FPG when providing a structure to a process on a set
of activities that can not be assumed instant by nature.

initialize enable begin terminate
1 1

L
not started i closed
1

init]-:-b[enabled running —b[terminated]
| T :{ skipped I
1

Fig. 1. Simple activity instance state transition diagram (adopted from [I])

Figure|l| shows a simple activity instance state transition diagram. When an
activity instance is created it enters the init state. The enable state transition
transfers the activity to the enabled state. Before an activity instance enters the
running state it can still be skipped by the skip transition. An enabled activity
instance can begin and enter the running state. Once accomplished, an activity
instance enters the terminated state.

[1] also proposes a complex model of the activity instance state transition
system. It allows an enabled activity instance to get disabled for some period
of time. Also, a running activity instance can get suspended and afterwards
return to the running state. Finally, the closed state in addition to terminated
or skipped can also be failed, undone, or cancelled.

It is always possible and is allowed to come up with other state transition
systems to represent activity instances. Therefore, instead of focusing on a one
particular solution we rather state a list of generic requirements we expect any
activity instance state transition system to fulfill if designed to be used as an
FPG building block. An activity instance internal state transition system must
contain the following generic states:

o enabled state—a state which means that the activity instance has to be
accomplished in the process instance in order to realize the process goal

o runmning state—a state signals that work is currently conducted for the pur-
pose of accomplishing the activity instance

o terminated state—a state which means that the activity instance was ac-
complished for the purpose of reaching the process goal.

Additionally, an activity instance state transition system must allow only a
strict order on proposed activity states: first enabled, then running, and finally
the terminated state. Once an activity is in one of the proposed states it can
not return to the previous one given by the order. However, other states might
be injected in between, e.g., an enabled activity can be disabled for some period
of time or a running activity can be suspended and afterwards returned back to
the running state.

The state transition diagram from Figure [1| satisfies the proposed require-
ments. It contains enabled, running, and terminated states and does not allow

any scenarios that are forbidden by the proposed ordering constraints. Note, that
one can decide on desired behavior by selecting appropriate mapping of generic
states, e.g., one might decide to map the closed or the terminated state from
Figure [T] onto the generic terminated state.

Once a direct correspondence between the generic activity instance states
and the concrete activity implementation states is done, one can automatically
map FPG transition states onto activity instance states. The generic enabled
activity instance state corresponds to the FPG activity enabling and the generic
terminated state corresponds to the FPG activity firing (cf. section . Thus,
once an FPG activity is enabled following the FPG execution semantics a new
activity instance should be transferred to the generic enabled state. Once an
activity instance is terminated, has reached its generic terminated state, the
corresponding FPG activity should fire to mark the FPG process state transition.
The impact of the decision of a mapping between concrete and generic activity
instance states should become clear now. In case we decide to map the generic
terminated state onto the terminated state from Figure [1| the decision to skip
the activity will not trigger the FPG state transition. Alternatively, if decided to
accept the closed state as the generic terminated state, the FPG state transition
will be triggered regardless of actually performing some work on accomplishing
an activity instance or skipping it.

There is no direct mapping of the generic activity instance running state
onto the FPG formalism. However, there is an additional constraint that no two
activities executed by one role can be in the running state. We have already
presented a concept of roles (cf. section . A role is a sequential system capa-
ble of executing assigned process activities. A role can consult its task list (cf.
Definition |4)) prior of selecting an activity for execution. Once started with the
selected activity (entered the generic running state) the role should not be able
to work on other activities. Only when the running state of the activity instance
is left, the role can proceed with other activities.

In the simplest case it should be restricted that only one assigned role can
execute an activity and that once started with the activity execution the role
should accomplish it and bring it to the generic terminated state. However, more
sophisticated scenarios can be envisioned. A role can suspend current activity
execution in order to switch to another enabled activity and then return to the
execution of the prior activity. Also, one can think of scenarios where several
roles collaboratively accomplish an activity, i.e., several roles select the same
activity for execution from their role task lists.

4 Flexible Business Process Scenario

In this section we present a real world flexible business process scenario. We
show how this scenario can be formalized as a FPG.

The scenario describes a process of customizing, preparing, and shipping an
order to a customer. The business process is decomposed to activities as follows.
Once an order is confirmed by the customer, “negotiate product customization”

Ship order

Prepare
promotional

Fig. 2. Petri net model that captures flexible business process scenario

(NPC) activity takes place. In the scenario we do not concentrate on a specific
product but assume a generic one, e.g., this can be a backpack. Following, “check
stock” (CS) activity takes care of determining whether all basic materials are
available to realize the order. One can “purchase raw materials” (PRM) required
to customize a product, “make production plan” (M PP), and “do staffing” (DS)
by assigning responsible for the task “manufacture product” (MP). Some ad-
ditional work packets need to be performed prior of shipping the order to the
customer; these are “prepare gifts” (PG) and “prepare promotional info” (PPI)
to include into the order shipment. Also, somebody needs to take care and “pre-
pare invoice” (PI). Once the order is ready someone has to “decide on shipper”
(DOS), “pack” (P), and “ship order” (SO). Finally, it is required to “archive
order info” (AOI).

It is clear that one might come up with several reasonable process models
on the proposed set of activities. Following, we specify designed flexible activity
execution constraints we assume for our scenario. A process instance can start
with execution of either N PC or C'S. Once both are accomplished, it is allowed to
proceed in any order with execution of PRM, M PP, and DS activities. Once all
the materials are available, production plan is ready, and workers are identified,
it is possible to start with M P activity. At the same time somebody can take
care of order supplements and perform PG, PPI, and PI activities. Once the
ordered product is manufactured and all the supplements are prepared, activities
concerned with order finalization can take place. It is required to accomplish
AOI, DOS, and P activities. If order is packed and the delivery method is
determined it is possible to proceed and do SO activity.

The Petri net model from Figure [2| captures the flexible process scenario.
The model suffers from explosion of modeling constructs, in particular Petri net

— | Manufacture;
product
. Purchase
raw Pack
Negotiate materials
o Prggare Ship order
i ifts
customis. Make g —
production]
plan shipper
Check Prepare
stock promotional
info Archi }
i rchive order
| Do staffing ve
Prepare |
— invoice

Fig. 3. FPG model that captures flexible business process scenario

places, that attempt when combined to represent all possible states of the flexible
process scenario.

Figure |3| shows a graphical representation (for details refer to [4]) of the
FPG model (A, E,T) that also captures our flexible process scenario, E =
{e1,ea,€3,€4,e5} such that: ey = (), {NPC,CS}), e = ({NPC,CS} ,{PRM,
MPP,DS}), es = ({PRM,MPP,DS},{MP,PG,PPI,PI}), e, = ({MP,
PG,PPI,PI} ,{P,DOS,AOI}), es = ({P,DOS},{SO}), and function T is
such that T'(e1) = T(e2) = T'(e3) = T'(eq) = T'(e5) = and.

After the process initialization phase, activities NPC' and C'S get enabled,
S(NPC) = S(CS) = (1,0). Eventually both activities are accomplished in the
ad-hoc manner and result in the FPG state S such that S(NPC) = S(CS) =
(0,1). Once in such a state further activities enabling takes place and S(PRM) =
S(MPP) = S(DS) = (1,0). The process continues by obeying the FPG execu-
tion semantics until S = (0, 1) for all the process activities. Then, the termination
condition holds and the process terminates.

The amount of FPG model elements from Figure[3] contrary to the case of the
model from Figure 2] clearly exhibits a linear behavior in respect to the amount
of modeled execution constraints. One might introduce concurrency into the
FPG model by distributing activities among different roles, e.g., supplementary
activities PG, PPI, and PI can be assigned to a different role as M P activity.

5 Conclusions

The applicability of hypergraphs for process modeling task was investigated
in [8I9UTOITT]. The authors propose metagraph structure. Activities in a metagraph-
based workflow are represented by arcs that relate objects consumed and pro-
duced during activity execution. Similar, the approach of case handling is

strongly based on data as the typical product of the processes [T2/13[T4IT5].
Case handling focuses on what can be done to achieve a process goal.

Similar to metagraphs, FPG employs hypergraphs for the task of workflow
modeling. However, FPG follows the well-accepted paradigm of modeling activ-
ities as graph nodes, rather than as arcs. Similar to case handling, a process
participant is allowed to decide what needs to be done to achieve a process goal.
But unlike in the case handling case, the decision is taken based on the activities
already performed, and not based on data objects at hand.

This paper briefly presented the FPG formalism and contributed to the in-
terpretation of FPG when modeled for concurrent execution of process activities
by different process participants. This paper together with [4] finishes overall
introduction of a novel approach for representing ad-hoc process control flow.
The future work will be concerned with validation of the approach and study of
its applicability in industry.

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Verlag (2007)

2. Davenport, T.: Process Innovation: Reengineering Work through Information Tech-
nology. Harvard Business School Press, Boston, MA, USA (1993)

3. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. HarperBusiness (April 1994)

4. Polyvyanyy, A., Weske, M.: Hypergraph-based Modeling of Ad-Hoc Business Pro-
cesses. In: Proceedings of the 1st International Workshop on Process Management
for Highly Dynamic and Pervasive Scenarios, Milan, Italy (9 2008)

5. Berge, C.: Graphs and Hypergraphs. Elsevier Science Ltd. (1985)

6. Berge, C.. Hypergraphs: The Theory of Finite Sets. Amsterdam, Netherlands:
North-Holland (1989)

7. Petri, C.: Kommunikation mit Automaten. PhD thesis, University of Bonn, Bonn,
Germany (1962) (In German).

8. Basu, A., Blanning, R.: Metagraph Transformations and Workflow Management.
In: HICSS ’97: Proceedings of the 30th Hawaii International Conference on System
Sciences, Washington, DC, USA, IEEE Computer Society (1997) 359

9. Basu, A., Blanning, R.: Metagraphs in Workflow Support Systems. Decis. Support
Syst. 25(3) (1999) 199-208

10. Basu, A., Blanning, R.: A Formal Approach to Workflow Analysis. Info. Sys.
Research 11(1) (2000) 17-36

11. Basu, A., Blanning, R.: Workflow Analysis using Attributed Metagraphs. In:
HICSS ’01: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34)-Volume 9, Washington, DC, USA, IEEE Computer
Society (2001) 9040

12. Aalst, W., Berens, P.: Beyond Workflow Management: Product-Driven Case Han-
dling (2001)

13. Aalst, W., Weske, M., Grunbauer, D.: Case Handling: A New Paradigm for Busi-
ness Process Support (2005)

14. Giinther, C., Aalst, W.: Modeling the Case Handling Principles with Colored Petri
Nets

15. Reijers, H., Rigter, J., Aalst, W.: The Case Handling Case (2003)

	Flexible Process Graph: A Prologue
	Introduction
	Flexible Process Graph Foundations
	From Formalism to Real World Business Processes
	Process Roles
	Modeling Parallelism

	Flexible Business Process Scenario
	Conclusions

